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The AMS Magnet

A state of the art
superconducting magnet for the
Alpha Magnetic Spectrometer.
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Magnetics

Superconducting wire
Arrangement of coils
Magnetic fields
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Superconducting wire (1)

NbTi superconducting filaments
Copper matrix

High-purity aluminium cladding e ——

Space .
May 2003 Cryomagnetics



Superconducting Wire (2)
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Two large coils
provide the main
magnetic field
“‘component across the
magnet bore.
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The first
dipole coll
being
wound.
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Two sets of 6 racetracks
Increased dipole field
Reduced external field L —
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Juxtaposition of colls
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Magnetic field - external

Magnetic
field at the
surface of
the vacuum
case.

Companent: #BMOD

0.0373828 D.133885 u:snsa.a: ) '_..--""""_ : :"""-\
o — s

Space _
May 2003 Cryomagnetics




Cryogenics

Superfluid helium storage and handling
Coll cooling
Current supply
Cryogenic safety
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Storage and handling (1)
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Superfluid helium vessel

2500 litres

Fully welded aluminium construction : e —
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Helium vessel
construction
A\ /

B
L/

Two aluminium
cylinders with
cross bracing at
the centreline.

Through tubes
for magnet
supports.
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Helium vessel analysis

Detailed FE analysis has
Included loads due to:

Eddy currents; |:2'";:
Pressure; i
Sloshing;

Launch/landing with

tank
cold or warm
0, 50% or 100% full.
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Helium vessel hardware
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Phase
separator

Porous plug
technology as used
on IRAS, COBE,
SHOOT and IS0.

AMS porous plug
developed by Linde
(Munich).
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Calorimetric

Inventory.
AMS mass gauges developed by Linde and
similar to I1SO design. e
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switch

Persistent switch
allows operation of
the magnet with no
external current
connection.

AMS uses medical-
standard (MRI)
switches.
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Radiation shielding

GFRP
honeycomb
construction.

Heat
conduction In
high-purity
aluminium.

Space _
May 2003 Cryomagnetics



Radiation shield construction (1)

Radiation

shield IR0
components (eSS
Under Frodda s d 4 |

construction o
in Finland, &
the USAand
England. Y
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Radiation shield construction (2)
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Radiation shield
analysis

li'i:;ZZ FE analysis on
.- Shields covers

L. 33I40

i Inertial

| = thermal

magnetic

i loads.
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Dipole Moments and
Nominal Vent Rate

The figures on the following three slides
are from a letter from Hans Hofer of
ETHZ/MIT (Magnet Project Manager) to
Jim Bates of NASA/JSC, the AMS
Mission Manager.

— -
Space _
May 2003 Lryomagnetics



Dipole Moment (1)

As agreed in 1999, AMS will provide the
as-built magnetic field and dipole
moment data after the flight magnet is
completed.
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Dipole Moment (2)

For normal, long-term operation, the
AMS magnetic dipole moments will be
less than:

e 100,000 A-m? parallel to ISS X-axis
e 40,000 A-m? parallel to ISS Y-axis
e 190,000 A-m? parallel to ISS Z-axis
— ~
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Nominal Vent Rate

The AMS-02 nominal continuous vent rate
will be approximately 5 mg/s
(milligrammes per second) and will
exhaust via a zero-thrust vent aligned
with the ISS +/-Y axis.
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Colil cooling (1)

Colls are suspended in the vacuum case
and cooled by conduction to the
helium vessel.
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Colil cooling (2)

T — Heat is removed

- ~ from the coils at
thermal intercepts
', connected to a
% thermal bus.

B8 The thermal bus
98 contains superfluid
¥ helium with very
| high conductivity.
N ki )
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Colil cooling (3)

The thermal
bus IS
connected to a
heat exchanger
In the helium
tank.
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Colil cooling (4)

This cooling

| technology was

| developed specially
for AMS.

| Experimental work in
. 2001 showed the
system worked as
predicted.
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Current supply (1)

AMS operates at
currents up to 459 A.

Conventional
superconducting
magnet current leads
are bulky, heavy and
consume large
guantities of liquid
helium.
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Current supply (2)

A new type of lead
has been developed
for AMS,
Incorporating a
mechanical
disconnect and a
thermo-mechanical

pump.
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Current supply (3)

The disconnect allows
the leads to be
thermally decoupled
when not In use.
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Current supply (4)

thermo-
hanical pump
P) Is used to
the leads with
um during

ging.
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Current supply (5)

. P ﬁ i
4 & .,'." ‘.‘"-- =Y J .

The TMP consists of a
filter, heater, housing
and instrumentation.

A TMP has NO moving
parts.
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Current supply (6)

ace TMP technology
s first developed by
\SA for the SHOOT
ssion In 1993.

| The AMS TMP Is under
: M Y ‘E'evelopment at ILK
_a % Dresden, Germany.
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Cryogenic safety

Extensive thermodynamic analysis and
testing has been carried out to prove
that the system is safe.
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“—==r=—t—=T11 The challenge

Rupture of the

| vacuum case on the
|I ground could lead to
: 1—_11-4 :

A
2

air leakage into the
#| vacuum space.

This can result in high
heat loads to the
| superfluid helium and
rapid venting of gas.
AT
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Analysis

Standard compressible flow equations
cannot be used because helium is not
an ideal gas at low temperatures.

But the theory can be applied from first
principles If the heat flux Is known,
giving pressurisation, temperature rise
and venting rate.

— ~

Space _
June 2004 | _'mﬂgﬂEtICS



EXxperiments

< ® © @ & e A test facility
o has been
constructed to

i — measure.

Temperature
(D~ cmp
rise;

Pressure rise;
Venting rate.
O
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Small (12 litre)
superfluid helium
vessel;

Fast acting vacuum
release valve;

Temperature,

pressure, liquid level,

' vacuum and mass
monitoring. _— —__

Space _
June 2004 Cryomagnetics




Cryogenic insulation

Thermal
Insulation
supplied by CTD
(Colorado) to
reduce heat flux.

Applied as 3 mm
thick
conformable
tiles.
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rimental procedure

—

EXpe

Test vessel filled with
liquid helium at 4.2 K;

Pumped down to 1.8 K;

Topped off and pumped
down again.
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Breaking vacuum

June 2004

Vacuum valve opens In
120 ms.

Helium pressurises
then vents from the
cryostat.

Venting rate inferred
from the loss of mass
of the system.

T
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Results

Results of experiment and analysis
published at the 17t International
Magnet Technology Conference
(Geneva, 2001).

Heat flux with no insulation 36.0 kW/m-.

Heat flux with insulation 4.4 kW/m?.
- s .
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Faillure scenarios (1)

On the ground

Sudden catastrophic loss of vacuum is
conceivable during ground handling.

Helium tank will be insulated to minimise
venting rates and reduce the size of vent
pipework.
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Fallure scenarios (2)

In the Shuttle payload bay

No credible scenarios have been identified
which could lead to vacuum tank rupture
once the Payload doors are closed.

System Is designed to be safe If two of the
O-rings are damaged In two places, using
experimentally-determined heat fluxes.

— ~~
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Faillure scenarios (3)

On the
International
Space Station

Vacuum case
IS Irrelevant.
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Pressure
relief (1)

Cryogenic pressure
relief valve protects
against blockage In
the porous plug.

This 1s for mission
success only.

Valve supplied by
Linde, similar to
valves used on ISO.

June 2004
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Pressure relief (2)

Primary pressure
relief for the system
IS given by burst
discs.

Burst disc selection
and qualification has
been In conjunction
with the JSC safety
panel.
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Pressure Relief (3)

e Burst disc is reverse-
buckling with a
/TN peripheral score and
= cutting teeth in the
L/ vent ring.
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N

Pressure Relief (4)

-

. Deliberate
purst of a
peripherally-
scored disc.
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Pressure Relief (5)

Peripherally
scored discs from
Fike have been
successfully leak
tested and
vibration tested.
There was no
degradation of |
the leak tightness '
after vibration. —
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Cryogenic safety -
conclusions

The cryogenic system has been shown to
be safe in all credible circumstances by
analysis and experiment.

The NASA Safety Panel accepted these
analyses and experiments in a meeting
on 17 January 2003 in Houston.
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Mechanics

Magnetic forces and supports
Magnet structure

Inertial forces and supports
Straps

R T
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Magnetic forces

Magnetic forces much
higher than inertial
forces but:
Loads never
superimposed,;
Loads reacted
Internally;

Thoroughly tested on
the ground.
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Magnetic force analysis

i FE analysis of

g magnetic loads.

= FE analysis of stress
and deflection iIn

structural
components.

N e T
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Structural Components

b e T
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Inertial forces

Inertial forces on
the magnet are
supported from
the vacuum vessel
by a system of 16
straps.
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Strap design (1)

)

7

Straps are designed
for minimum heat
leak, maximum
strength and
maximum stiffness.

— ™
Space _
May 2003 Crya:}magnetlcs




Strap design (2)

The straps are made
In several parts to
make the best use of
material properties at
different
temperatures.

pR
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Strap design (3)
3

This also allows the
attachment of
Intermediate heat
sinks at metallic
bearings.
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Strap design (4)

The straps have a
passive orbital
disconnect feature
which reduces the
heat load on orbit.
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Strap manufacture

Straps are being
manufactured by CTG
In England.

This company has
extensive experience
In the manufacturing
of composite supports
for medical and other
applications.
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| Analysis and
test results
will be

| presented
separately
by Lockheed

N s B
, Space _
May 2003 — Cryﬂmagnetlcs



Magnet support
equipment

Cryogenic valves
Warm valves
Cryocoolers

Avionics

e~ b —
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Cryogenic valves (1)

yogenic valves
pplied by Weka of
Itzerland.
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Cryogenic valves (2)

- Actuating helium
.| gas stored

| outside the
| vacuum case in a
.| pressure bottle.
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Cryogenic valves (3)

Qualification
testing for the
cryogenic valves
will include:

Multiple cycling at
1.8 K;

Cold vibration
testing at 4.2 K.
e
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Warm valves (1)

E e Warm valves will be

— B * supplied either by

l ﬁ Polyflex (England) or
Weka (Switzerland).

4 i These valves will be
positioned outside the
vacuum vessel.

—
I‘l:‘

troke = 15
L

sube

— T
Space _
Cryomagnetics

May 2003



Warm valves (2)

~unctional testing of the
Polyflex valve for
oressure drop and
magnetic field tolerance
has been carried out.

pR
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Cryocoolers (1)

AMS has four Stirling
cycle coolers
connected to the
outer shield.

The coolers are
developed and

gualified from
commercial units by
NASA/GSFC. e
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Cryocoolers (2)

Electronics by
ETH.
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Avionics

Cryomagnet avionics box (CAB)
Magnet current source
Cryomagnet control and monitoring system
Cryomagnet self-protection system

Designed and manufactured by CRISA
(Astrium) In Spain
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Magnet current source

Input ISS bus
15 A
122 V dc

Output to magnet
459 A
5Vdc

R T
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Control and monitoring
system

Monitors more than 50 cryogenic
thermometers

Measures temperatures to 1 mK at 1.8 K

Telemetry and telecommand interface
between the magnet and the AMS CAN
bus

— -
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Cryomagnet self-
protection system

Detects very early onset of a magnet quench.

Ensures quench energy evenly distributed
between magnet coils.

Initiates re-cooling of the magnet system.

Contains a watchdog which will discharge the
magnet in case of loss of power or
communications.

— -
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Uninterruptible Power
Supply

Provides uninterruptible power to the
Cryomagnet Self Protection system and
the quench heaters.

The magnet can always be discharged,
even If power, communications and
ground control are lost.
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Magnet operations
overview

Cool down and filling
Steady state operation
Charging
Quenching
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Cool down to 100 K
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Cool down to 4.2 K
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Cool down to 1.8 K

<]

Kvaon

<

Mvace

vase

6o B
God  Be
s
>
>
Gusch
Gused
st
2 ()
(>
e

Bvaod  bvaos

Vacuum Vessel

%

||||||_l—

To Current Lead Discomnect To Cryogenic Vales

]

~

SN % % ‘Smal flight vent
YTV T LY
Vapour Voo e
Cooled Pump.
Lead:
2
" SN

Large fight vent

Vapour Cooled

Srield 501

. X
[ oo o oveed S S
L

Bo0rn ey
08t 05t 0abr
Themamechancal
P oL
JanYan) |
L Lt |
changor and
@@ i ufler o o
o
n ¥ Il [E—
perssnt Houi
Scnes Themmometers
oD o P
G & iyocooler

—_— owd
i E] anmoie
ot oum
& o - ) e M A ——
e O e
Treeters LD (Eoinuse ony) -
& ocse
=
—— @ e
1) i LY
[z} e &
- ME——

Valve - ressie Relief

Valve - Manually Actuated

Main Helium Tank

ovise.

Valve - Hellomatic

3
b
&

Iy Actuated

Vacuum Vessel o 5 H“\

Space _
May 2003 Cry@magnetlcs

P
@&




Stead

Wwize

ovise.

May 2003

Was
BouA
10bar

y state (ground)

Vapour Cooled

Srield 501

WiTh

‘Themomechanical
Pump TMPO2

Vacuum Vessel

Gauging
Heaters

"

Main Helium Tank

D
ot
oo S Ve
s s 5 g g % g 3
L o 2 JoX! [oX: [oX: F—————
s OAS s s
|
DV20D  Dv208 I Ve T
Vacuum Vessel | 05 bar %I
I
| =151 | '
| | | I —I= | | M |
o Current Lead Disconnect To Cryogenic Valves _—_—
=
A G
Y e
Do )
vapeur
feo]
e
g
h S
- 2
[ oo ovoot > ovess! oo s Tomr
M|
Temmechanca
v Py oo
b s LI I 1
ey
@@ S
=
poon etamn
P Py i Femaers
o2
Supataa
S toon
i -~ . R
Py Gauging N Meters.
trs 2 (o uso o
o,

P
@&

XoX @ @ @ ¢ ZEQ

o

Space

08 bar 08bar 08bar

GSE Interface

Cryocooler

BurstDisc

Valve - Non-Return

Nozzie

Thermometer

Helum vl probe.

Pressure Transducer

Valve - ressie Relief

Valve - Manually Actuated

Valve - Hellomatic

Iy Actuated

Pump.

T

Cryomagnetics



rging/Discharging

6o B
God  Be
s
>
>
Gusch
Gused
st
2 ()
(>
>

Vacuum Vessel

| | ||||_l——|_||||

To Current Lead Discomnect To Cryogenic Vales

i——H

~

‘smallfightvent

Vapour Cooled
Stield 102

Large fight vent

Vapour Cooled

‘Shild #01 ———
Envmg
ovos.
e002 Rv02
] 2t oviz ovo3 L 6bar BDO7A B007E. 8007C
\ 08 bar 08bar 08bar

SR ER
iz | |
o0 3
<< old Heat
oS == =

P

I f—

ium i
Themometers

Was

<
<

g

:

@D

ot
< &/

a1
20U & Eﬁ Cryocooer
ov2
Suports
e, E] —
T oo
[t ) - D) ol N Ve - Non e
oy Gag S e
Tretmaners C (Eomauseomy
~ Nozzle
= =
T S —
p——
1 Sarg el e probe
[} e \w,
)
Pressre Tarscoee
=
D oo vy s
I Main Helium Tank
ovies [rav—

Iy Actuated

Vacuum Vessel O - H

Space :
May 2003 ifi.rya:;magnetlcs

P
@&




Steady state (orbit)
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Quenching (1)

The magnet Is not expected to quench In
space until the liquid helium runs out
at the end of the experiment lifetime.
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Quenchlng (2)

Magnets where the
colls are In direct
contact with liquid
helium can rapidly
produce large volumes
of helium vapour on
guenching. They also
lose all their liquid
helium.

- i ~
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Quenching (3)

AMS must be able to be re-cooled
following a quench in space with Its
existing helium inventory.

The AMS colls are indirectly cooled.

The cooling system limits the heat flow
from the colls to the helium vessel to a
manageable level.
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Temperature (K)

AMS Coll Quench Test

AMS Racetrack Coil Quench Test
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